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Abstract

/7& ;7"/;///'/1/4
—/This 1is the first in a sceries of three papers in which we discuss a method

¢ I
for "post-processing™ a finite element solution to obtain high accuracy approxi-

mations for displacements, stresses, stress intensity factors etc. Rather than
5, P
take the values of these quantities *“directly"™ from the finite element solution,
w& evaluate certain weighted averages of the solution over the entire region.
These yield approximations that are of the same order of accuracy as the strain

energy. -We& obtain error estimates, and also present some numerical examples

to illustrate the practical effectivity of the technique. In the third paper
- U

3o T

of this series ye address the matters of adaptive mesh selection and

a'posteriori error estimation.
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51 Introduction

§1.1 The role of post-processing.

In many instances the primary aim of a finite element analysis is to
obtain the values of a few important quantities with a rather high accuracy.
For instance, in structural mechanics, the values of displacements, stresses
or stress intensity factors at a small number of critical sites in the
structure are important design criteria. Decisions on whether the structure
meets design specifications, or whether it is safe are made on the basis of
these few quantities. The bulk of the remaining numerical output of the
finite element analysis is generally not scrutinized so closely, but rather
is looked at from a more qualitative viewpoint. It may, for instance, be
used to identify the critical points in the construction, to obtain a
graphical display of the structure's deformation or to examine the solution's
plausibility with a view to replacing, if need be, the particular mathematical
model or constitutive law employed.

These considerations suggest that some thought should be paid to how the W
solution should be "post-processed" to obtain values for these quantities.

Since onlv a few quantities ever need to be calculated., we should be willing,

if necessarv, to expend a modest amount of computational effort on any post-
processing calculation. A straightforward approach to post-processing is to

take the displacements or stresses directly as they are output from the finite

element computations. "Curve fitting" methods for stress intensity factor
calculations also fall into this "direct'" category. There are, however, more
sophisticated techniques which are currently implemented in many commercial
codes. We mention, for instance, the calculation of stresses at the Gaussian

points of certain element types, and the use of the "stiffness derivative"

method of Parks [1] or the "J-integral” method of Rice [2 ] for the deter-
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mination of stress intensity factors.
We shall show in this and two succeeding papers that there are post-

processing procedures available which give an accuracy for many physically

important quantities of the same order as the error in the energy of the

finite element approximation. For example, in solving the plate problem

(that is, the two dimensional biharmonic equation) with conforming elements

of degree p>5 it is possible (with an appropriate finite element mesh)

to determine at any point the displacement, rotation, moment and shear force,
all with an order of accuracy O(N-(p_l)) » where N 1is the number of degrees-

of-freedom of the finite element model. Compare this with the "direct"

approach which gives displacements to Q(N rotation to
and moments to O(N—(p_l)/z) . The fact that the "direct" approach results in
higher accuracy for displacements than moments is widely known. We remark
also that the post processing approaches that we shall outline can be well
understood from within the standard "energy' theory of finite elements. This

contrasts with the complex mathematical theory which is needed to analyze the

direct approach to the determination of pointwise quantities.

§1.2 A general form for post-processing calculations

Let us denote by ¢ the quantity (e.g. stress at a point) which we wish
to determine. We shall write ¢(w) for ¢ to indicate that ¢ relates to
a problem whose exact solution is w . Now, let us suppose that we know a

function ¢z so that

(1.1) o= o(w) = I wz d@ + R
f

where  1is the region on which our problem is posed, and R 1is an integral

which may be computed using only the problem’s input data (applied tractions
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and forces etc.). As a simple illustration of what (1.1) may describe,

consider the case where ¢ 1is the value of w at some given point. Were

the influence function (Green's function) known for this point, then we could

take =0 and ¢ would be expressible in terms of the input data alone. So

(1.1) would take the form ¢=R . Of course, the influence function is not

in general available. At the other extreme, if we take ¢ to be the Dirac

delta function at the point under consideration then we could set R=0 and

¢ = f wi dQ . This is simply a formal way of saying, evaluate w directly

Y]

at tue point. However, as we shall see later, there are many choices for

between these two extremes. Let us also mention that (1.1) may also be

written in other equivalent forms (e.g. after an integration by parts we are

able to obtain an integral in terms of the derivatives of w instead of w

itself). The well known J-integral of Rice [ 2} could be thought of as arising

from such a modified version of (1.1). The path independence property of the

J-integral then corresponds to different choices for ¢ . [

Having (1.1) suggests an obvious method of approximation for ¢ . If 3 ’

is a finite element approximation to w , then we could try to approximate f

$ = d(w) by ' f

(1.2) 3 = ¥w) = I wZ 40 + R .
Q

The difference between ¢ and ¥ is given by

(1.3) e=06-9¢= [(w-3)¢ a
Q

and we see clearly that the cholice of ¢ affects the magnitude of this difference.
If ¢ 1is the Dirac delta function, then % is the point value of 3 and e

is the pointwise difference between w and 3 .

3

‘




If however ¢ is not concentrated at one point, then e becomes some weighted
average of w-w . It is well known that the finite element method appears

more reliable when its accuracy is measured in an average rather than a point-
wise sense. Spurious oscillation which may cause serious loss of accuracy in
pointwise values of the approximate solution (especially of its higher
derivatives) are filtered out by averaging. This is especially the case with
the p-version of the finite element method. So, even at this early stage, we

see that choices of ¢'s which have large support are likely to give superior

approximations 3 . A good choice for ¢ 1is an important feature of any
successful implementation of (1.2). Numerical experience however has shown
that, provided ¢ meets a few simple criteria, 3 is quite insensitive to the
choice of 7 .
Another implementation issue that we shall address is the optimal choice
of mesh (and consequently of 3) for use in (1.2) This is especially significant
for adaptive finite element codes, where some adaptive criteria must be set.
Obviously, if a good approximation to ¢ 1is our ultimate goal, this adaptive
criteria should be directed towards producing a 3 that performs well in (1.2).
From a computational point of view, evaluation of ¥ needs at most oO(N)
operations, while the solution of the finite element problem itself usually needs

/3

about 0(N2) operations in two dimensions and O(N7 ) in three dimensions.
Since only a few evaluations are ever needed, the computational effort entailed

is relatively insignificant.

§1.3 Outline of the paper
This is the first of a series of three papers which shall deal with post-
processing in the finite element method. 1In this paper we detail some

particular applications of the general theory outlined in §1.2. 1In §2
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we treat the example of a one-dimensional, elastic supported beam. Here we

shall be interested in post-processed values for the displacement, rotation,

Ew b, i o Ry a5
gt ) oas

moment and shear force at certain points, along with the average displacement
over a subsection of the beam. §3 deals with the simple two dimensional problem

of a membranc on an elastic support. For this problem we shall be interested in

the displacements and stresses at certain points. Finally in §4 we discuss a
numerical example related to the problem treated in §3.

The second paper of the series will be devoted to applications in linear
facture mechanics. In particular, we shall be concerned with the computation
of stress intensity factors (including both kl and kz for mixed mode
fracture). In the third paper we address the issues of a'posteriori error

n A "\
estimates for ¢ and adaptive mesh selection for w .




§2. A One-dimensional Example
§2.1 Formulation of the example
By way of a one-dimensional application of the techniques outlined in

§1.2 we shall consider the problem of a clamped beam (of unit length) on an

elastic support. The governing differential equation ie

2.1) (aw")" - (bw")' 4+ cw = f on (0,1)

with the boundary conditions

1]
o

(2.2) w(0) = w'(0) and w(l) = w'(1) =0 .

We shall assume that a, b, ¢ and f are smooth functions which satisfy

(2.3) a(t) >a >0 0<t <1)

(o

b(t), c(t) >

The coefficient a 1is the rigidity of the beam while b and ¢ relate to

the elastic properties of the support. For this problem we shall be interested

in the evaluation of the following five important mechanical quantities:

(I) The displacement of the beam ¢, = ¢1(w) = w at 0 <t <1.

1
(II) The rotation of the beam ¢2 = @2(w) = w' at 0 <t <1
(I1I) The bending moment ¢3 = ¢3(w) = aw" at 0 i'E <1
(IV) The shear force ¢4 = ¢A (w) = (aw')' - bw' at 0 i.E <1
(V) The average displacement of the subsection tl Tty of the beanm,
g = 05(w) = (tz—tl)_l ]tz w dt
t1




§2.2 Expressions for ®i(ir1, oo g h)

For the moment, let ¢ be any function defined on (0,1) which satisflies
the boundary conditions (2.2). Suppose also that ¢ is sufficiently smooth
to allow any operations that we carry out. Now, multiply (2.1) by ¢ and

integrate by parts four times over the entire interval,

1 1
f f ¢ de f ((aw")"¢ - (bw') "¢ + cw¢) dt
0 0 '

t-
[(awn)|¢ - awng,v + aw'd" - w(a¢u)|]_

_ t+0
-0 t 1
~-[bw'¢ - bwe'] _ + (f + f } Li¢]w dt
t+0 i
t

1]

[w(—(a¢")' + b¢') + W'(a¢") + BW"(-¢') +

t-0 1
(2.4) ((aw'") ' - bw')¢l_ + (f + f ) L{¢]w dt
t+0 0 T

where
L[¢] = (a¢p")" - (bo')' + co.

Let us now be more specific about the behavior of ¢ near t . Depending
upon which derivatives of ¢ are continuous at E', (2.4) will form the basis

of our expressions for Qi (i=1, ..,4) .

Case (I): Suppose that

P ¥ e .

(et E‘O =0  (i=0,1,2) while
t+0 }
(2.5a) _
t-0 o
(61 7= a@™,
t--0

P At
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then (2.4) gives

Ql(w) = w(t) = =( I {

1
+ f JL[¢]w dt + f fo dt . :
0 t )

1
This is exactly in the form (1.1) with R = j f¢ dt and r = -L[¢].

0
Notice that L[4l will in gencral be discontinuous at t . We shall see

later that from a numerical point of view it is important that f be smooth

on (0,1). So let us append to (2.5a) the condition i
.\ t-0
@2.sp) (Lol =0 5=0,...,n
t+0

D i

where n is some integer, which, for the moment, will remain arbitrary.
If we select for ¢ the influence functicn (Green's function), then
(2.5a) and (2.5b) are satisfied. Indeed, L[¢) =0 on (0,t) and (t,1),
and we have ¢1(w) = f:f¢ dt. Of course, in gneral, we cannot find the
'

influence function. Nevertheless, functions ¢ which satisfy (2.5a) and

(2.5b) are readily constructed, as the following example shows:

Example 1: We shall construct a function ¢ which fulfills all the necessary
conditions, with n=1 in (2.5b). The construction is done in a number of
steps. First, define
0 0 <t 5_? i

$o(t) = —_—1 -
0 a(t:)1 t <t <l .

and then set

ikl o & 3 4

t X
¢l(t) = f f,f ¢0(S)ds dx dy .
0060 : i

So ¢1(t) satisfies (2.5a). To meet the requirement (2.5b) with n=1 we

8




Y
define
-4 . -5 -
:l(l) + 0 (t=t)  + ¢ (t-t) 0 <t<t
2O =3 () ot <1

where the coefficients a and 8 are to be chosen so that (2.5b) holds. It

is casy to sce that this nceds

. T
A PYTS Ligy ] 40 and
IS DM ¢ DI : l
S"S!a(‘)(”wl luo+3"‘(t)“ )

(This step can be extended in an cbvious fashion to handle n > 1.)

We now have a function that satisfies (2.5), however it may not yet

satisfy the boundary conditions (2.2). There are many ways this can be

remedied. Two possibilities are:

(i) Let x be a smooth function which vanishes, along with its first

derivative, at t=0 and t=1 , but has a value of 1 in an interval about

t meets all the requirements. We shall refer to x as a

t . Then ¢ = X@Z

cut off function.
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(ii) Let ¢3 be a smooth function such that ¢§i)(0) = ¢§i)(0) and ¢

A1),
62 )(1)(i=0,1) . Then we may set ¢ = ¢2—¢3 . We¢ shall refer to ¢3 as a

(i)
3

blending function. Various mixtures of these two techniques are possible;
tor example, using a cut ff function to impose the boundary condition at

one end, and a blending function approach to handle the other endpoint.[]

The above example typifies a general method of construction that we shall
employ, either explicitly or implicitly, throughout this series of papers:
Firstly, a relatively simple function is constructed that behaves in some
prescribed "singular" manner near a given point. This function must then be
modified to ensure that it satisfies a set of boundary conditions on the
entire boundary of the region of interest. Either cut off function, blending
function or a combination of these techniques may be used to achieve this. Let
us note at this point, that blending function techniques will usually lead
to a smoother modified function than will the use of a cutoff function. For

this reason, in a numerical setting, the blending function approach is to be

preferred.

Case I1: Suppose that

t-0
(6 =0 w0,y ,
t+0
t-0 -
(2.6a) [ ¢" )_ = a(t) . and
t-0
t-0
{ (a™' 1_ =0
t+0

then (2.4) gives

t 1 1
Oz(w) = w'(t) = -(I + [-) L{¢] w dt + f f ¢ dt .
0 ¢ 0

10
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As for Case I, it will turn out to be important to add the condition

(jy O
(2.6b) [ L{¢1? 1. =0  3=0,...,n
t+0

Example 2: We shall construct a function ¢ that meets our requirements. We

proceed much as in Example 1. First we define ¢0 as in that example, but

now set

t x

¢l(t) =-f f 9g(s) ds dx .
00

To satisfy (2.6b) (with n=1, say) and the third part of (2.6a) we may define
$,(0) + a(t-0)> + 8D + v (-’ 0<t<t
3,() = _
¢>1(t) t<t<l
where o,f and Yy are to be chosen so that (2.6b) and the last part of (2.6a)

! hold. (That this may always be done follows since a(?)#O.) We then proceed

to impose the boundary conditions (2.2) by the same methods described in

Example 1.[]

Cases III and IV: If t is internal to the interval then selecting

(2.7) [ ¢" 1_ =0 ,

(-Ca9")' +by']_ =0, and
t+0

t-0
{ L[¢](j) ]__+0 =0 j=0,...yn ’
t

- ﬂ‘&%.‘g"’bt::é“_.‘."nr y 5




gives

t 1 I
¢3(w) = aw”(t) = - ( J+J ) Lf¢]w dt +f f¢ dt
0 t 0

with smooth L([¢} . While choosing ¢ to satisfy

t-0 !
I¢ ]_ =1 ’
t+0
t-0
[e" 1_ =0 ,
t+0
(2.8) -0
[ a¢n ]— = 0 ,
t+0
t-0
[-(a¢")" + bo' ]1_ =0 , and
t+0
t-0
AT I . ,,
T+0 =0 (j=0,...,n) j
|
leads to the expression '
t 1 1
%(w) = ((aw")"' - bw'Xt) = - (L+j_)L[¢]w dt + { f¢ dt
t J
0

for 04(w) .

To treat these two cases when t is one of the endpoints we need a
slightly different argument. For definiteness, suppose that t is the
right hand endpoint t=1 . We now let ¢ be a smooth function on (0,1)
which satisfies the boundary condition ¢(0) = ¢'(0) = 0 . Analogous to

(2.4) we now have

1 1 :
f f¢ dt = f((aW")"¢ - (bw')'¢ + c wh)dt ,
0 0

12




1
(2.9) = ((aw")' ¢ - aw" ¢>')it=1 + f L{¢]wdt .
0
If we further set
(2.10) (1) = 0 and ¢'(1) = -1
we obtain after rearranging (2.9)
1 1
o (w) = aw'"(l) = -f Lf¢) wdt +f fo dt ,
3
0 0
while, using in place of (2.10)
(2.11) ¢(1) =1 and $'(1) =0 R

leads to the expression

1 1
¢4(w) = (aw”)’'(1) = -[ Li¢] wdt + [ f¢ dt . i
0 0 |
Functions ¢ satisfying (2.7), (2.8), (2.10) or (2.11) and the appropriate
boundary conditions are readily constructed using techniques similar to those

described in Examples 1 and 2.

§2.3. An expression for ¢5 . i
The definition of ¢5 in §2.1 is already in the form (1.1), for we may
certainly write
) 1 1
: (2.12) @5 = ¢5(w) = I w ;odt s
: . 0
t
= ty1 ;
where %o (e,-t4) tyst<te, ?
0 otherwise .

13




However, from our point of view, this is an unsuitable expression for @5 since

co is not smooth. To overcome this failing we may proceed as follows: Define

t s, Sy S,
¢1(t) N f r E(éﬂi [ f r..(s,)ds, ds, ds, ds
00 3% o 011 2 3 4

Let ¢2 be a smooth blending function that satisfies the boundary conditions

V0 =P ama PP e

and set $ = ¢1<- ¢2 . Multiply (2.1) by ¢ and integrate by parts four

times over the entire interval,

1 1
f f¢ f (aw")"¢p - (bw') "¢ + c¢w dt
0 0

I
|

ot

L{¢lw dt

o

L[¢1]W = L[@z]w)dt

O~ =

1
Jo(cow - (b¢1')w + cpw - L[¢2]w)dt

Upon rearrangement then

1 1
= ' -
¢5 = os(w) = ] ((lnp1 )!' c¢»l + L[¢>2])Wdt +J f ¢ dt
which is of the form discussed in §1.2 with
1
g = (bé;")' - cé; + Lls,] and R = I £ ¢dt .

0

In contrast to Co , notice that ¢ has a continuous first derivative (though,

in general, a discontinuous second derivative at tl and tz ); A [ with

more smoothness can be constructed by iterating the above process.

t

14




§2.4 The accuracy of the approximations 31(1=1,--.5)

In §2.2 and §2.3 we derived some integral expressions for the Oi .
These fitted into the general pattern discussed in §1.2. We shall now address
the important question of the accuracy of the approximations $1==31( 3) which
arise when the finite element solution 3 is used in place of w in these
expressions.

To be definite, suppose we have set up a finite element model of (2.1)/(2.2)
using C1 polynomial elements of degree p(>3). Write Il""’IN for the
intervals which comprise the finite element mesh. Denote by S the set of
all admissible finite element functions. Let h = zax (length Ik) . In the
case of the problem (2.1)/(2.2) the fundamental orthogonality property of the

v
finite element error w-w takes the specific form

1
(2.13) f (a(w-w)"v" + b(w-w) 'v' + c(w-w)v) dt = O
0

for all v in S . Denoting by E(*) the energy expression
1

E(+) = J @(()M2 + b2+ ¢ (9D at ,
0

the standard finite element error estimate may be written as

(2.14) E(w—z) < min  E(w-v¥)
v*€S
where the minimum is taken over all v* from S .
For the purposes of the analysis, we need to introduce the auxilliary

function ¢ which satisfies

M P -

(2.15.a) Liyv] = ¢ on (0,1) and

¥(0) = y'(0) = 0 = y(1) = ¢'(1) ,

or what, after integration by parts, is the same thing
15
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1 1
(2.15b) I(a'b" u' + bYu' + c P udt = J ¢ u dt
0 0

for all u with boundary values as in (2.2). Now, recalling (1.3), we have the

following estimate for the error ¢ - L;

1

1
e=0-9% f;(w-%dt

0

it

1
f(a(w-?;)"w" + bw-w) "' + c(w-w)¥) de

(putting u = w-w in (2.15b)

il

1
f (a(w-w)" (U-V)" + b(w-w)' (Y-v)' + c(w-w) (y-v)) dt
0

for any v from S (by(2.13)). So

fo-¢|

iA

1
min (f (a(w=0)"  (b-v)" + bw-w) ' ($-v) + c(w-w) (¥-v)) dt)
v€S 0

min (E (w-?i)l”“ E (w-v);.i)

V€S

Ia

(2.16) 5_min(E(w—v*)%)min(E(y—v)%)
v*€3 V&S

using (2.14). 1In words then, the error in ¢ is bounded by the product of the
energy norm difference between w and its best approximation from S ,
and the energy norm difference between ¢ and its best approximation from S .
The importance of the smoothness of 7 can now be appreciated. Smooth functions
¢z will give smooth auxillary functions ¢ , and these will be approximated
well by the functions in S .

Let us now try to obtain an asymtotic rate of convergence for % which
will be applicable to both the h and p-versions of the finite element

method. First, recall the approximation result (see [3]): If z is a

16




function defined on (0,1) and if the smoothness measuring quantity

s N 3
Hellg = ¢z & [ 1) a0
2=0 k=1
Ty

is finite for some integer s > 2 , then

(2.17) min E(z-v) < € _ ||z||
vES b 2(s 2)

where C1 is a constant which does not depend on the function 2z , the
finite element mesh or the order of elcments used; and m=min(p-1,s-2). If
the load f in (2.1) and the function £ are smooth enough to guarantee that

V| € < = and ¢l < » , then, provided the coefficients a, b and ¢
s s
1 2

are sufficiently smooth, it may be shown that

el < ¢, |I£]] and
sl+4 2 s1

(2.18) i
ol = cq 1Hslly

where C2 and C3 do not depend on f and 7 respectively. Having these

smoothness properties of w and ¢ , we may make use of the approximation

bounds (2.17) in (2.16) to obtain

(m,+m,) 4
h 1 "2
lo<¥] < ¢, T |Ivl| [Twll
1 p(sl+sz+4) sl+4 sl+4
(2.19)
(m )
h l 2

where m= min (p—l,si+2)(1=1,2) . Likewise (2.14) gives

2m
E(w-w) < C c¢ h 1l ___ ||f||2

1 2 p2(sl+2)

17
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We mentioned in §2.2 and 2.3 that the relevant I's could be made

arbitrarily smooth (i.e. n in (2.5b) etc. was arbitrary). For large
values of n  this could becoume laborious. Note that (2.19) allows dis-
continuitices at meshpoints without any adverse effects on the accuracy of i
% . What is important is that ¢ be smooth in the interior of each of the

Ik . In the h-version of the finite element method, there would, at least :;

fromour analysis, secm to be no reason to proceed any further than the stage

at which S, + 2 = p-1. At this stage l@—%[ = O(hml t p-l)’ and this rate

2m
would not be improved by increasing Sy - Comparing this with E(w—a) = 0¢h 1),

. : YV .
we see , as was previewed in §1, that the error l¢—¢] is at least of the same
order as the energy of the error in the finite element solution. For the p-

version there would seem to be no such limit. We may increase s indefinitely

2
always improving the convergence rate for 3 as we go. Here we have
- (s +s,+4) -2(s,+2)
~ ) v 1
|¢_¢| = 0(p ) and E(w-w) = 0(p ) .

0f course, actual computations must be carried out working from only

a limited range of non zero h's and finite p's . In such a setting,

the asymtotic rate of convergence alone is not necessarily a good

indication of an approximation's accuracy. As (2.19) shows, the error
n

in ¢ 1is related not only to p and h , but also to ||c||s
2

and the constants C, . As s increases, the numerical values of these :

i 2

quantities may also increase dramatically with the net effect that there is a

i

o

loss of accuracy in ¢ . In practice, it is usually more important to ensure

that the numerical value of ||C||s is reasonable, than to construct 's
2

with high orders of continuity. Recall also our comment earlier that blending

function techniques are generally superior to cut-off function methods in this .

respect. Another important practical consideration is the choice of a finite

18




element mesh. As (2.16) shows the accuracy of % is related to the approxima-

bility of both w and ¢ . So, an optimal mesh for calculating ¥ would be

one which was, in some way, simultancously good for both the original problem

(2.1)/(2.2) and the auxillary problem (2.15a). We shall explore this question
in the third of this series of papers. The sorts of concerns touched upon in

this paragraph are of great importance in two dimensional problems. For many

such problems there is no complete analogue to2.18), and we are denied the

luxury of being able to make 1 as smooth as we wish.

19
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§3  Two Pimensional Problems
§3.1 Formulation of the problem
To illustrate the ideas of §1.2 in a two-dimensional setting, we shall

consider in some detail the simple model example of

(3.1) Vzw - kw = § in @ , a polygonal region, e

with the boundary condition

(3.2) =0 on 3 4, the boundary of .

Here we suppose that k > 0 and assume, for simplicity, that k is a

constant and f a smooth function. The problem (3.1)/(3.2) could, for
example, be thought of as describing a polygonal membrane on an elastic support,
that is fixed alongits edges. We shall be concerned with evaluating the

following quantities which are related to w :

(i) The displacement él = ¢l(w) = w(x) at a point x = (;i,;é) in Q.

(ii) The stress ¢, = ¢ (w) = weA(y) at a point y = @l,;z) on 29 , which
is "far" from a corner point. (The case of y '"close" to a corner

point will be discussed in our second paper.)

§3.2 An integral for ¢1 '
Let ¢(x) be an arbitrary function defined and sufficiently smooth on
Q - {x} , which vanishes on 32 . For ¢ > 0, small enough, denote by S_

a disc with centre x and radius € which lies in Q . Multiply (3.1) by

¢ and integrate over Q_Se' Using Green's Theorem, we obtain .

(3.3) f f & dA = f (Vweit¢ -~ VoA w) ds + J Li¢jw dA |
Q-8 2S
£ € Q—SC

where L{-] = Vz(-) - k() and A denotes the unit normal on QSE

pointing towards x . Now, impose the extra conditions

20
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[

¢ (x) (2")_1105 T(x) + 0(1)

(3.4) (as x + x)

n

Ve(x) = v((2m) Viog F(x))+ o(r(x)™h

where r(x) = ((xl—;l)z + (x24;2)2)% . Then, in the limit as € » 0 , (3.3)
vields
(3.5) :I(w) = w(x) = - J Li+Jw dA + J fé dA

Q Q
Note that the integrals appearing on the right hand side of (3.5) are possibly
improper. We see that (3.5) is precisely in the form required by (1.1) with
gz =-Ll¢] and R = J f ¢ dA . Notice also that were ¢ the influence
function (Green's functgon) for (3.1)/(3.2), then the first integral on the
right hand side of (3.5) vanishes. In general, of course, the influence
function 1s not available.

Just as in §2, it will turno out that from a numerical viewpoint, it is
important for ¢ to be a smooth function. The problem of selecting a suitable
L , or what is the saée thing, of choosing ¢ appropriately can be thought of
as having two aspects. Firstly, ensuring that L[¢] is smooth in the immediate
neighborhood of x ; and secondly, of imposing the boundary conditions on ¢

in such a way that no unsmooth behavior of ¢ 1is introduced.

Let us talk in more detail about these points as they relate to our model

problem. It is easy to verify that if
(3.6) 3 = en7ha + £ 7w log T

— — - A
then L[$]==0(r2 log r) 1in the vicinity of x. Now ¢ has the
required asymtotic behaviour (3.4), however, it does not vanish on 32 , and

so cannot be used directly for ¢ in (3.5). Let us suppose for a moment that

X is not too close to 30 . Then, as for the one-dimensional case, there are

S —




N : . v . .
a nusber of techniques for modifying ¢ . We could, for instance, proceed in

one of the following wavs:

(i) Let X{x) be a smooth "cut off" function which vanishes on 3@
but is a constant, equal to 1, in a ncighborhood of x . Then 2{x) = X{(x) f(x)

satisfies all our requirements.

(ii) Let ¢o(x) be a smooth "blending' function on 2 which agrees with

Y N
¢(x) on 3 . We could then take #(x) = @(x)—go(x)
(iii) Usc a combination of the above two techniques—-"cut off" functions

to handle part of the boundary, "blending" functions for the remainder.

In the case that x is very close to 230 , technique (i) is not the proper method

to use, as the "cut off" function X would then have large derivatives

Methods (ii)/(iii) provide better ways of

in the region between x and 3Q
n

A

handling this case. Note however, that though L{#] is smooth near ;, $

Y
is not. For an arbitrary "blending"' function ¢y agreeing with ¢ on 39Q

near x ,there is no reason to expect that Li®0] be smooth. One way around

this, at least in the case when x , though close to the boundary of & , is

"
far from a corner peint of the boundary, is tc formally extend ¢ across the

straight line segment of the boundary closest X . Now let ¢ be the reflection

of this extension back into @ . Then L ¥ is smooth, and V¥ agrees with

$ on the straight line segment of the boundary closest X . Standard "blending"

techniques may then be used to deal with the remaining three sides of o .

There are obvious extensions of the above ideas to domains with curved boundaries.

§3.3 An integral for ¢2

For definiteness, suppose that §- lies on the straight line segment ((1,-1),

(1,1)) which forms part of 23R . This time, let ¢ be an arbitrary, sufficiently

smooth function defined on § , which vanishes on 3Q-{x} . For ¢ > 0, small
enough, denote by S+(;) a half disc with centre x and radius ¢ , which lies
€

in g . Multiply (3.1) by ¢ and integrate over Q-S: . Using Green's Theorem
22

STy

M‘ . o

.

- 9

B T



we obtain

(3.7) J f ¢ dA = J (Vweiry =~ Vi nw)ds + f L{¢] w dA ,
-5’ I a-s?
€ € €
t
+
where !; denotes the circular portion of the boundary of SC , and as usual

+ .
i denotes a unit normal pointing towards the centre of Sc (see Fig. 1). HNow

if we impose the extra conditions

3 -  Llcose(x) roo! 7
(3.8) J(x) = F00) + o(r(x) ) (as x =+ y
3 from within Q )
Vix) = v %.Segrﬁjzl )+ o(E) ™
r(x)

where r(x), 8(x) are plane-polar coordinates centered on ; (see Fig. 1),

then, in the limit as € >0, (3.7) gives

. _ dw,— f
(3.9) »Z(W) = é‘;gy) = fl[¢] w dA - ; f ¢ dA .
Q Q
This is in the form of (1.1) with ¢ = L{¢] and R =-{f ¢ dA . In general
Q

the integrals on the right hand side of (3.9) will be improper.




As usual we should choose ¢ such that ¢ is smooth. This problem can

be approached in an analagous fashion to that outlined in §3.2. In our case

it can be verificed that if

(3.10) te0 =& da v Ere® g Ty
1

then L[k] is smooth about x (in fact, L[}] = 0 (r(x) log ;(x)) .

(\‘ s - Py
Now ¢ has the necessary asymtotic and boundary behavior near y , but it does

: N
not vanish everywhere on 30 . To construct suitable ¢'s based on ¢ we may

use obvious adaptations of the “cut off" or "blending" techniques outlined in

§3.2.
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§3.4 More gencral problems than (3.1)/(3.2)

The methods of §3.2 and §3.3 may be applied to problems more general

than (3.1)/(3.2) (e.g. problems in clasticity, problems with non-constant

coefficients or non-homogencous boundary conditions). We shall not go

into details here. Let us however, just mention that for the problem

(3.1) with the essential boundary condition (3.2) replaced by the natural
boundary condition Vw « i ® 0 , there would have been no need in §3.2 to

impose any boundary condition on ¢ The expression (3.5) in this case

would have to include an additional term, namely, a line integral around

M .

§3.5 The accuracy of the approximations 31 . 32
Suppose that we set up a finite eclement model of the problem (3.1)/(3.2).

In the usual way let us partition £ irto elements El, EZ""’En say (we

do not need to be specific about the shapes of the elements), and assume that

on each element we represent W by a polynomial of degree p . The demand

of conformity requires that these polynomials be continuous across the inter-

element boundaries, and vanish on 39 . Denote by § the set of all such

finite element functions. Let hj be a characteristic linear dimension
of E, , and set h =max h, .
k| 7]

The finite element solution 3 satisfies

(3.11) f(v?&v\wk{:v)u-—ffvm
2 2

for all v from S ; in addition, we have

25
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(3.12) J(V(w—x) Vv + k(w—&)v) dA = 0
Q

for all finite element functions v in S . Defining the strain energy expression

by !
E(+) = f(v(-)2 + k()% aa , :
194
we have
(3.13) E(w-w) < min E(w-v) .

vE€S

In line with the general procedure outlined in §1 we consider approxima-

In either case, we make

[}

tions %1 = 31(3) and %2 %2(3) to ¢, and ¢

1 2’

an error of the form

]

(3.14) e= 0-9

I T (w-w) dA )
Q

Now, just as for the one-dimensional case, introduce an auxiliary function
v(x) which satisfies
vy - kp= =t :
v=0 on 39 .

or equivalently,

Q

((V v Vu+ k ¢ u)dA = [ Z u dA
Q

for all functions u which vanish on 3Q and for which E(u) 1is finite.

We may certainly choose u = w-g to obtain from (3.14)

L e e

e = f V oy V(W) + k P(w-w) dA ,
a

26




and using (3.12) we sece that for any finite clement function v from §

lei = | [ (V (y=v) ¥ (w-w) + k (y-v) (w-w)) dA |
Q

i_ilu—v)% E(w-s)%

So on choosing v to minimize E (y-v) , and recalling (3.13), we have

-

1 * 1
(3.15) Je! < min E(‘¢-v)5 min  E(w-v )'2
vE€s vk €3

This estimate is telling us, exactly as did (2.16) in the one-dimensional case,
v
that the accuracy of ¢ depends on how well both the solution w of the

original problem, and the solution  of the auxiliary problem, can be

{ approximated in the energy norm by the finite element functions in § .

If we try to obtain rates of convergence for 3 » we come up against some
important differences between the one and two dimensional cases. In general,
the anélog of (2.18) holds only if the boundary of Q is smooth. If 23R is
not smooth then (2.18) must be modified to account for some special singular
terms that arise because of corners of 30 (see [ 4 }). These singular terms
govern the smoothness and ap;}oximability of w and ¢y . The analog of estimate
(2.17) is also more complicated in the two dimensional case (see [ 3]).- None-
theless, if the mesh has the proper level of refinement around thé corners of

i , then similar results to those in the one~dimensional case can be

2 b Lua

achieved if the rate of convergence is now measured with respect to the
number of degrees-of-freedom rather than p and h . To go into further

details is beyond the scope of this paper.

A




2 "?V?.U"hmww

§4 A Numerical Example

§4.1 Formulation of the example

As a practical demonstration of the methods discussed in §3, we shall
consider some numerical results for the problem modelling a square, uniformly
loaded membrane which is fixed along its edges. More specifically, we deal

with the problem governed by the differential equation

4.1) vw=-1 ong-= (-1,1)°

and boundary conditions
(4.2) w =0 on the boundary 3Q of Q .

We shall employ the theory of §3 for the calculation of approximate
values for:
(I) The displacement at the centre of the membrane: 01 =¢1(w) = w(0)
(I1) The stress at the point P(1,0): ¢, = ¢, (w) = v P) .
2 2 axl
By the method of separation of variables, an infinite series representation of
w can be found. Using this series the following exact values (accurate to

S5 significant figures) can be calculated:

E(w) = Ilwlsz = .56231

Q
Ql(w) = w(0) = -.29469

--a—E'— =
¢y (W) ==—(P) .67528

*1
Let us also note that the solution w 1is relatively smooth (in fact, it has

square integrable second derivatives, though not square integrable third

derivatives).

§4.2 The finite element approximation

We shall consider a simple finite element model of (4.1)/(4.2). Namely,
bilinear elements on a square uniform mesh. By the symmetry of the problem,

we need only actually calculate using the quarter-segment OQRP of Q (see

28
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(-"’l) ) 4

(-1,-1) 2 (1,-1)

Figure 2; The region of the model problem.

Figure 2). For this problem we expect the following rates of convergence:
2 N
0(h”) for the energy F(w)
0(h) for the energy norm

O(hz) for the displacement 3(0) |
n
0(h) for the stress %%— (P)

1
where, as usual, h denotes the length of the side of an element.

Using a uniform mesh and elements of degree 2 or higher we would obtain

0(h3) for the energy
O(hZ.S-c) for the displacement 3(0)
1.5 v
and O(h °°"%) for the stress —a—z—(p) |
1

e

where € > 0 1is an arbitrary small number. For the h-p-version, it is

possible by suitable refinement about the corner points to obtain

arbitrarily large orders of convergence with respect to the number of

degrees-of-freedom (see [3]).

29
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84.3 Calculation of 31(3)
In accord with the theory developed in §3.2, we use the formula
31('\‘.}) =-J( vZo W dA - f 6 dA ,
§ 2

where ¢ takes the generic form

2

¢ = X(x,,x.) [~l log (x 2 + x )5 - ¢ (x.,,x,)]
1°72 2n 1 2 0o 172 *

We consider two choices for ¢ :

Case (a): X(xl,xz) = X(xl)X(xz) wvhere

gl

— 1 0 < |t] <
X(t) =
<lel <1

o

1-8(lel- 57

(see Figure 2 , and

¢0 (xlaxz) =0

1 1 1

-1 0 |

49
Figure 3: Cutoff function used in the evaluation of ¢l , case (a).
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Case (b): X(xl,xz) =1 , and

9
(%2 )(1+x> Y\
$ (x ) = . 1o »~--~—]—~.-—-~2__.
0 *17%2 27\ %8 3

In Case (a) we have employed a cut off function technique to enforce the
boundary conditions on ¢ , while in Case (h) a bleinding function mcthod has
been used. The first integral in the for.yoing formula for }1 may be
calculated by numerical quadrature, (We used Gaussian quadrature.) The
second integrand is singular at 0 . This integral may be evaluated
analytically. However, it is also possible to calculate it numerically by

2

the following procedure: Choosing p such that Vzp =1 (e.g. p = ‘/A(x1 +x22)),

integration by parts gives

I ¢ Vzp dA = I $ Vpeii ds - I V¢si p ds + [ V2¢ p dA + p(0,0)
Q N 3Q Q

All the integrals on the right hand side are nonsingular, and may be readily
evaluated by numerical means.

The results of the computations are shown in the middle section of Table 1.
For comparison, we also list the value of the finite element solution w at 0.
Notice that 3(0) and both cases of %1 all show an O(hz) rate of
convergence. This is as we would expect. Observe also the superiority of
the post-processed value inACase (b) over Case (a). This is in line with
our previous comment that blending function techniques can usually be expected
to perform better than cut off function methods. (Looking at the definition of
X in Case (a) and examining Figure 3 si»'ws that indeed X changes quite
rapidly in the region ]le >% . In terms of the urguscnts we presented in
§3.5, we should therefore not expect the corresponding ¢y to bec as well
approximated from within our finite element subspace as it would be in Case (b)--

31
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No. of elements in quarter

segment (uniform mesh). 4 16 64 Exact
Value
LIl It LT TTTIIIIC I TITIIITYiiTITTToTIlT Tl troioTiiT
Fnergy ncorm cerror in 3
RV 30.1% 15.27% 7.62%
- [u(w-w)
v (w)
S tel RS S SO S iats ab U S
w(0) (%).310714 .295393 .295596
(relative 7 error) (5.4%) (1.3%) (.31%)
(a) .268783 .287205 .292751 .29469
¢1(3) (8.8%) (2.5%) (.65%)
| (relative ¢ error)
(b) .287306 .292829 .294220
(2.5%) (.63%) (.16%)
i ";Z'"J" T - i R
| So(P) .482142 . 565480 .616687
| (relative % error) (29%) (16%) (8.7%)
(a) .64758 .67197 .67463
i
! (4.1%) (.49%) (.096%)
.67528
E_ (W)
2 (b) .66623 .67313 67477
(relative 7 error) (1.3%) (.32%) (.076%)
(c) .66482 .67276 .67468
(1.5%) (.37%) (.089%)

TABLE 1.

Table of the results of the numerical calculations.
((*): negative signs have been supressed in this table)
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- . u ’\4 s .
The tact that the accuracies of w(0) and ?l(w) are comparable in this
| example is a consegunence of our neing bilincar elements.  Nonctheless, Table 1
. B ,\U . -
shows that in Case (b), the ¢ values are twice as accurate as the w(0)
values for the same number of ¢lements. Putting this another way, for the

same accuracy the "direct" displacement wethod would require twice as many

elemerts as the post-processing approach of Case (b).

~

. . VY
4.3 Calculation of u‘z(w)

In the case of our model problem the theory of §3.3 leads to

¥ - )r\"zé'wdi+(¢dA

i

where ¢ takes the gencric form

fo= x(x X ) (]A) __.___)fi.}__._ - A (X X ) R ’
v 1°72 - ( —1)2+x 2 Yo 172 '
*1 2

We shall treat three cases: |
Case (a): 1 : s < X, <1 1

i _ 4 3 2 1

x(xl,xz) = 8(6x1 8x1 + 3xl ) 0 < Xy <k
0 1< X < 0 :
(See Figure 4(1i)) |
; S Wl |
i oLy e |
: 1 |
1 0 <X < 1 .

: Case (b): X(x1,%,) = » 4

172 l—|x1|3 -1 <x;<0 4|

(See Figure 4(ii))




| 1 1 1 1 1 3
(0] | -1 0] |
(1) (i)

Figure 4: Cut off functions used in the cvaluation of %
(i) case (a)
(ii) case (b)

Cases (a) and (b) correspond to our using a blending function technique to
satisfy the boundary condition on the edges x, = *1 , and a cut off function

2

method to handle the edge Xl = -1 . 1In Case (c), a blending function method
is used to handle the entire boundary. Concerning the actual evaluation of

“\ “ n, n
52(w) , the same comments made in §4.2 about Ql(w) apply here also.

The results of the calculations are shown in the lower part of Table 1,

vhere, for comparison, we have also listed the corresponding values of

4"
dw . R
5;—(?) . In contrast to the situation for the displacements, we sece that
{
1
\
the post-processed values for ¢2 are markedly more accurate than the "direct™
W
w .
value 3;—(P) . We see, as theory predicts, an 0(h) rate of convergence for
1

the "direct" value, but an O(hz) rate for %2 .
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